

Annual Drinking Water Quailty Report Consumer Confidence Report January 1 to December 31, 2020

NEVADA SPECIAL UTILITY DISTRICT PWS ID NUMBER: TX 0430053 (972) 843-2608

This report is intended to provide you with important information about your drinking water and the efforts made by Nevada SUD to provide safe drinking water. The analysis was made by using the data from the most recent U. S. Environmental Protection Agency (EPA) required tests and is presented in the attached pages. We hope this information helps you become more knowledgable about what is in your drinking water. For more information regarding this report please contact Johnny Rudisill/General Manager at (972) 843-2608 or email at nevadawater@nevadawater.org. Este reporte incluye información importante sobre el agua para tomar. Para asistencia en español, favor de llamar al telefono (972) 843-2608.

Nevada SUD had a water loss of 3.25% for 2020

Public Participation Opportunities

Nevada SUD regular monthly board meeting is the second Monday of every month at 7:00 pm. The location of the meeting is 108 N Warren Street, Nevada, TX 75173

Source Water Susceptibility Assessment (SWSA)

The TCEQ has completed a Source Water Assessment for all drinking water systems that own their sources. The report describes the susceptibility and types of constituents that may come into contact with your drinking water source based on human activities and natural conditions. The system from which we purchase our water received the assessment report. For more information on source water assessments and protection at our system, contact Johnny Rudisill at (972) 843-2608.

A Source Water Susceptibility Assessment for your drinking water source(s) is currently being updated by the Texas Commission on Environmental Quality. This information decribes the susceptibility and types of consituents that may come into contact with your drinking water source based on human activities and natural conditions. The information contained in the assessment allows us to focus source water protection stategies.

The source of drinking water used by Nevada SUD is purchased surface water. We purchase the surface water from North Texas Municipal Water District (TX0430044 North), Wylie Treatment Plant. It comes from the following Lake/River/Reservoir/Aquifier: LAVON LAKE.

For more information about your sources of water, please refer to the Source Water Assessment Viewer available at the following URL: http://gis3.tceq.state.tx.us/swav/Controller/Index.jsp?wtrsrc=

Further details about sources and source-water assessments are available in Drinking Water Watch at the following URL: http://dww2.tceq.texas.gov/DWW/

Sources of Drinking Water

The sources of drinking water (both tap and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Drinking water, including bottled water, may reasonable be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPAs Safe Drinking Water Hotline at (800) 426-4791.

Contaminants that may be present in source water before treatment include:

- *Microbial contaminants*, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- · Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water, runoff, and septic systems.
- · Radioactive contaminants, which can be naturally-occuring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

Contaminants may be found in drinking water that may cause taste, color, or odor problems. These types of problems are not necessarily causes of health concerns. For more information on taste, odor, or color of drinking water, please contact Nevada SUD's business office at (972) 843-2608.

You may be more vulnerable than the general population to certain microbial contaminants, such as Cryptosporidium, in drinking water. Infants, some elderly, or immune compromised persons such as those undergoing chemotherapy for cancer, persons who have undergone organ transplants, those who are undergoing treatment with steroids, and people with HIV/AIDS or other immune system disorders, can be particularly at risk from infections. You should seek advice about drinking water from your physician or health care providers. Additional guideline on appropriate means to lessen the risk of infection by Cryptosporidium are available from the Safe Drinking Water Hotline (800) 426-4791.

Additional Health Information for Lead: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Nevada SUD is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

Water Quality Test Results - Definitions

The following tables contain scientific terms and measures, some of which may require explanation.

Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Action Level Goal (ALG): The level of a contaminant in drinking water below which there is no known or expected risk to health. ALGs allow for a margin of safety.

Avg: Regulatory compliance with some MCLs are based on running annual average or monthly samples.

Level 1 Assessment: A Level 1 Assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water water system.

Level 2 Assessment: A level 2 Assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occassions.

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum Residual Disinfectant Level (MRDL): The highest level of disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Leve Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contamination.

MFL: million fibers per liter (a measure of asbestos)

mrem: millirems per year (a measure of radiation absorbed by the body)

Water Quality Test Results - Definitions Continued

na: not applicable

NTU: nephelometic turbidity units (a measure of turbidity)

pCi/L: picocuries per liter (a measure of radioactivity)

ppb: micrograms per liter or parts per billion - or one ounce in 7,350,000 gallons of water

ppm: milligrams per liter or parts per million - or one ounce in 7,350 gallons of water

ppt: parts per trillion, or nanograms per liter (ng.L)

ppq: parts per quadrillion or pictograms per liter (pg/L)

Treatment Technique or TT: A required process intended to reduce the level of a contaminant in drinking water

	Violations Table									
Violation Type	Violation Begin Date	Violation End Date	Violation Explanation							
Nevada SUD had no violations	N/A	N/A	No violations.							

Lead and Copper Rule

The Lead and Copper Rule protects public health by minimizing lead and copper levels in drinking water, primarily by reducing water corrosivity. Lead and copper enter drinking water mainly from corrosion of lead and copper containing plumbing materals.

	Lead and Copper										
Lead and Copper	Date Sampled	MCLG	Action Level (AL)	90th Percentile	# of Sites Over AL	Units	Violation	Likely Source of Contamination			
Lead	6/19/2019	0	15	1.24	0	ppb		Corrosion of household plumbing systems; erosion of natural deposits.			
Copper	6/19/2019	1.3	1.3	0.6272	0	ppm	1\10	Erosion of natural deposits; leaching from wood preservatives; corrosion of household plumbing systems.			

	Coliform Bacteria										
Maximum Contaminant Level Goal	Total Coliform Maximum Contaminant Level	Highest No. of Positive	Fecal Coliform or E. Coli Maximum Contaminant Level	Total No. of Positive E. Coli or Fecal Coliform Samples	Violation	Likely Source of Contamination					
0	0 positive monthly sample	0	0	0	No	Naturally present in the environment.					

Note: Reported monthly tests found no fecal coliform bacteria. Coliforms are bacteria that are naturally present in the environment and are used as an indicator that other, potentially harmful, waterborne pathogens may be present or problems that a potential pathway exists through which continination may enter the drinking water distribution system. If coliforms are found, this indicates the need to look for potential problems in water treatment or distribution. When this occurs, systems are required to conduct assessments(s) to identify problems and to correct any problems that were found during these assessments. A Level 1 assessment must be conducted when a PWS exceeds one or more of the Level 1 treatment technique triggers specified previously. Under the rule, this self-assessment consists of a basic examination of the source water, treatment, distribution system and relevant operational practices. The PWS should look at conditions that could have occurred prior to and caused the total coliform-positive sample. Example conditions include treatment process interruptions, loss of pressure, maintenance and operation activities, recent operational changes, etc. In addition, the PWS should check the conditions of the following elements: sample sites, distribution system, storage tanks, source water, etc. If the number of positive samples is below the required action level, then no assessment is performed. *E. coli* are bacteria whose presence indicates that the water may be contaminated with human or animal wastes. Human pathogens in these waste can cause short-term effects, such as diarrhea, cramps, nausea, headaches, or orther symptoms. They may pose a great health risk for infants, young children, the elderly, and people with severly compromised immune systes. When *E. coli* bacteria are found, thisindicates the need to look for potential problems in water treatment or distribution. When this occurs, systems are required to conduct Level 2 assessment(s) to identify problems and to correct any problems that

				Re	gulated Cor	ntaminants		
Disinfectants and Disinfection By- Products	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
Haloacetic Acids (HAA5)	2020	20	11.3 - 24.8	No goal for the total	60	ppb	No	By-product of drinking water disinfection.
Total Trihalomethanes (TThm)	2020	29	23.2 - 31.6	No goal for the total	80	ppb	No	By-product of drinking water disinfection.
Bromate	2020	8.91	8.91 - 8.91	5	10	ppb	No	By-product of drinking water ozonation.
Note: Not all sample result the future. TCEQ only requ	2		0 0	Level Detecte	d because s	ome results r	nay be part o	of an evaluation to determine where compliance sampling should occur in

Inorganic Contaminants	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
Antimony	2020	Levels lower than detect level	0 - 0	6	6	ppb		Discharge from petroleum refineries; fire retardants, ceremics, electronics; solder; and test addition.
Arsenic	2020	Levels lower than detect level	0 - 0	0	10	ppb	No	Erosion of natural deposits; runoff from orchards, runof from glass and electronics production wastes.
Barium	2020	0.061	0.058 - 0.061	2	2	ppm	NO	Discharge from drilling wastes; discharge from metal refineries; erosion of natural desposits.
Beryllium	2020	Levels lower than detect level	0 - 0	4	4	ppb		Discharge from metal refineries and coal-burning factories; discharge from electrical, aerospace, and defense industries.
Cadmium	2020	Levels lower than detect level	0 - 0	5	5	ppb	No	Corrosion of galvanized pipes; erosion of natural deposits; discharge from metal refineries; runoff from waste batteries and paints.
Chromium	2020	Levels lower than detect level	0 - 0	100	100	ppb		Discharge from steel and pulp mills; erosion of natural deposits.
Flouride	2020	0.225	0.218 - 0.225	4	4	ppm	NO	Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories.
Mercury	2020	Levels lower than detect level	0 - 0	2	2	ppb		Erosion of natural deposits; discharge from refineries and factories; runoff from landfills; runoff from cropland.
Nitrate (measured as Nitrogen)	2020	0.384	0.384 - 0.384	10	10	ppm		Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits.
Selenium	2020	Levels lower than detect level	0 - 0	50	50	ppb		Discharge from petroleum and metal refineries; erosion of natural deposits; discharge from mines.
Thallium	2020	Levels lower than detect level	0 - 0	0.5	2	ppb	NO	Discharge from electronics, glass, and leaching from ore-processing sites; drug factories.
5	•						• •	n nitrate levels in drinking water can cause blue baby syndrome. u should ask advice from your health care provider.

Radioactive Contaminants	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	violation	Likely Source of Contamination
Beta/photon emitters	2018	8.0	8.0 - 8.0	0	50	pCi/L	No	Decay of natural and man-made deposits.
Gross alpha excluding radon and uranium	2018	Levels lower than detect level	0 - 0	0	15	pCi/L	No	Erosion of natural deposits.
Radium	2018	Levels lower than detect level	0 - 0	0	5	pCi/l	No	Erosion of natural deposits.
Synthetic organic contaminants including pesticides and hericides	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamaination
2, 4, 5 - TP (Silvex)	2019	Levels lower than detect level	0 - 0	50	50	ppb	No	Residue of banned herbicide.
2, 4 - D	2019	Levels lower than detect level	0 - 0	70	70	ppb	No	Runoff from herbicide used on row crops.
Alachlor	2020	Levels lower than detect level	0 - 0	0	2	ppb	No	Runoff from herbicide used on row crops.
Aldicarb	2019	Levels lower than detect level	0 - 0	0	3	ppb	No	Runoff from herbicide used on row crops.
Aldicarb Sulfone	2019	Levels lower than detect level	0 - 0	0	2	ppb	No	Runoff from herbicide used on row crops.
Aldicarb Sulfoxide	2019	Levels lower than detect level	0 - 0	0	4	ppb	No	Runoff from herbicide used on row crops.
Altrazine	2020	0.2	0.2 - 0.2	3	3	ppb	No	Runoff from herbicide used on row crops.
Benzo (a) pyrene	2020	Levels lower than detect level	0 - 0	0	200	ppt	No	Leaching from linings of water storage tanks and distribution lines.
Carbofuran	2019	Levels lower than detect level	0 - 0	40	40	ppb	No	Leaching from soil fumigant used on rice and alfalfa.
Chlordane	2020	Levels lower than detect level	0 - 0	0	2	ppb	No	Residue of banned herbicide.
Dalapon	2019	Levels lower than detect level	0 - 0	200	200	ppb	No	Runoff from herbicide used on rights of way.
Di (2-ethylhexyl) adipate	2020	Levels lower than detect level	0 - 0	400	400	ppb	No	Discharge from chemical factories.
Di (2-ethylhexyl) phthalate	2020	Levels lower than detect level	0.6 - 0.6	0	6	ppb	No	Discharge from rubber and chemical factores.
Dibromochloropropane (DBCP)	2019	Levels lower than detect level	0 - 0	0	200	ppt	No	Runoff / leaching from soil fumigant used on soybeans, cotton, pineapples, and orchards.
Dinoseb	2019	Levels lower than detect level	0 - 0	7	7	ppb	No	Runoff from herbicide used on soybeans and vegetables.
Endrin	2020	Levels lower than detect level	0 - 0	2	2	ppb	No	Residue of banned herbicide.
Ethylene dibromide	2019	Levels lower than detect level	0 - 0	0	50	ppt	No	Discharge from pertroleium refineries.

Synthetic organic contaminants including pesticides and hericides	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamaination
Heptachlor	2020	Levels lower than detect level	0 - 0	0	400	ppt	No	Residue of banned herbicide.
Heptachlor epoxide	2020	Levels lower than detect level	0 - 0	0	200	ppt	No	Breakdown of heptachlor.
Hexachlorobenzene	2020	Levels lower than detect level	0 - 0	0	1	ppb	No	Discharge from metal refineries and agricultural chemical factories.
Hexachlorocyclopentadiene	2020	Levels lower than detect level	0 - 0	50	50	ppb	No	Discharge from chemical factories.
Lindane	2020	Levels lower than detect level	0 - 0	200	200	ppt	No	Runoff / leaching from insecticide used on cattle, lumber, and gardens.
Methoxychlor	2020	Levels lower than detect level	0 - 0	40	40	ppb	No	Runoff / leaching from insecticide used on fruits, vegetables, alfalfa, and livestock.
Oxamyl (Vydate)	2019	Levels lower than detect level	0 - 0	200	200	ppb	No	Runoff / leaching from insecticide used on apples, potatoes, and tomatoes.
Pentachlorophenol	2019	Levels lower than detect level	0 - 0	0	1	ppb	No	Discharge from wood preserving factories.
Picloram	2019	Levels lower than detect level	0 - 0	4	500	ppb	No	Herbicide runoff.
Simazine	2020	0.08	0.07 - 0.08	4	4	ppb	No	Herbicide runoff.
Toxaphene	2020	Levels lower than detect level	0 - 0	0	3	ppb	No	Runoff / leaching from insecticide used on cotton and cattle.
Volatile Organic Contaminants	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	violation	Likely Source of Contamination
1, 1, 1 - Trichloroethane	2020	Levels lower than detect level	0 - 0	200	200	ppb	No	Discharge from metal degreasing sites and other factories.
1, 1, 2 - Trichloroethane	2020	Levels lower than detect level	0 - 0	3	5	ppb	No	Discharge from industrial chemical factories.
1, 1 - Dichloroethylene	2020	Levels lower than detect level	0 - 0	7	7	ppb	No	Discharge from industrial chemical factories.
1, 2, 4 - Trichlorobenzene	2020	Levels lower than detect level	0 - 0	70	70	ppb	No	Discharge from textile-finishing factories.
1, 2 - Dichloroethane	2020	Levels lower than detect level	0 - 0	0	5	ppb	No	Discharge from industrial chemical factories.
1, 2 - Dichloropropane	2020	Levels lower than detect level	0 - 0	0	5	ppb	No	Discharge from industrial chemical factories.
Benzene	2020	Levels lower than detect level	0 - 0	0	5	ppb	No	Discharge from factories; leaching from gas storage tanks and landfills.
Carbon Tetrachloride	2020	Levels lower than detect level	0 - 0	0	5	ppb	No	Discharge from chemical plants and other industrial activities.
Chlorobenzene	2020	Levels lower than detect level	0 - 0	100	100	ppb	No	Discharge from chemical and agricultural chemical factories.

Volatile Organic Contaminants	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	violation	Likely Source of Contamination
Dichloromethane	2020	Levels lower than detect level	0 - 0	0	5	ppb	No	Discharge from pharmaceutical and chemical factories.
Ethylbenzene	2020	Levels lower than detect level	0 - 0	0	700	ppb	No	Discharge from petroleum refineries.
Styrene	2020	Levels lower than detect level	0 - 0	100	100	ppb	No	Discharge from rubber and plastic factories; leaching from landfills.
Tetrachloroethylene	2020	Levels lower than detect level	0 - 0	0	5	ppb	No	Disccharge from factories and dry cleaners.
Toluene	2020	Levels lower than detect level	0 - 0	1	1	ppm	No	Discharge from petroleum factories.
Trichloroethylene	2020	Levels lower than detect level	0 - 0	0	5	ppb	No	Discharge from metal degreasing site and other factories.
Vinyl Chloride	2020	Levels lower than detect level	0 - 0	0	2	ppb	No	Leaching from PVC piping; discharge from plastics factories.
Xylenes	2020	Levels lower than detect level	0 - 0	10	10	ppm	No	Discharge from petroleum factores; discharge from chemical factories.
cis - 1, 2 - Dichloroethylene	2020	Levels lower than detect level	0 - 0	70	70	ppb	No	Discharge from industrial chemical factories.
o - Dichlorobenzene	2020	Levels lower than detect level	0 - 0	600	600	ppb	No	Discharge from industrial chemical factories.
p - Dichlorobenzene	2020	Levels lower than detect level	0 - 0	75	75	ppb	No	Discharge from industrial chemical factories.
trans - 1, 2 - Dichloroethylene	2020	Levels lower than detect level	0 - 0	100	100	ppb	No	Discharge from industrial chemical factories.

Turbidity									
	Limit (Treatment Technique) Level Detected Violation Likely Source of Contamination								
Highest single measurement 1 NTU 0.31 NTU No Soil runoff.									
Lowest monthly precentage (%) meeting limit 0.3 NTU 100.00% No Soil runoff.									
NOTE: Turbidity is a measurement of the cloudiness of the	Interim a measurement of the cloudiness of the water caused by suspended particles. We monitor it because it is a good indicator of water quality and the effectiveness of our filtration.								

	Cryptosporidium and Giardia											
Contaminants	Collection Date	Higest Level Detected	t Level Detected Range of Levels Detected		Likely Source of Contaminants							
Cryptosporidium	2020	0	0 - 0	(Oo) Cysts/L	Human and animal fecal waste.							
Giardia	2020	0	0 - 0	(Oo) Cysts/L	Human and animal fecal waste.							

	Maximum Residual Disinfectant Level										
Disinfectant Type	Year	Average Level of Quarterly Data	Lowest Result of Single Sample	Result of Single	MRDL	MRDLG	Units	Source of Chemical			
Chlorine Residual (Chloramines)	2020	2.53	1.02	3.82	4.0	<4.0	ppm	Disinfectant used to control microbes.			
Chlorine Dioxide	2020	0	0	0	0.8	0.8	ppm	Disinfectant.			
Chlorite	2020	0.0475	0	0.483	1.0	NA	ppm	Disinfectant.			

NOTE: Water providers are required to maintain a minimum chlorine disinfection level of 0.5 parts per million (ppm) for systems disinfecting with chloramines and an annual average chlorine disinfection residual level between 0.5 (ppm) and 4 parts per million (ppm. Water systems using free chlorine are required to maintain a minimum chlorine disinfection residual level of 0.2 parts per million (ppm). The 0.21 ppm result was sampled during our temporary change in disinfectant from chloramines to free chlorine.

	Total Organic Carbon											
	Collection Date	Highest Level Detected	Range of Levels Units Units		Likely Source of Contamination							
Source Water	2020	5.16	3.95 - 5.16	ppm	Naturally present in the environment.							
Drinking Water	2020	3.14	2.13 - 3.14	ppm	Naturally present in the environment.							
Removal Ratio 2020 53.9% 28.4 - 53.9 % removal * N/A												
0				5.	ts. Disinfection is necessary to ensure that water does not have are reported elsewhere in this report. *Removal							

unacceptable levels of pathogens. By-products of disinfection include trihalomethanes (THMs) and haloacetic acids (HAA) which are reported elsewhere in this report. ration is the percent of TOC removed by the treatment process divided by the percent of TOC required by TCEQ to be removed.

Contaminants	Collection Date	Higest Level Detected	Unregulated Cor Range of Levels Detected	Units	Likely Source of Contamination
Chloroform	2020	10.8	5.89 - 10.80	ppb	By-product of drinking water disinfection.
Bromoform	2020	2.42	1.29 - 2.42	ppb	By-product of drinking water disinfection.
Bromodichloromethane	2020	10.7	7.80 - 10.70	ppb	By-product of drinking water disinfection.
Dibromochloromethane	2020	9.37	7.35 - 9.37	ppb	By-product of drinking water disinfection.

Disinfectant Residual Table									
Disinfectant	Year	Average Level	Minimum Level	Maximum Level	MRDL	MRDLG	Unit	Violation	Likely Source of Contamination
Total Chlorimines	2020	2.53	1.02	3.82	4.0	4.0	ppm	No	Water additive used to control microbes.

Secondary and Other Constituents Not Regulated							
Contaminants	Collection Date	Higest Level Detected	Range of Levels Detected	Units	Likely Source of Contaminants		
Aluminum	2020	Levels lower than detect level	0 - 0	ppm	Erosion of natural deposits.		
Calcium	2020	62.4	58.3 - 62.4	ppm	Abundant naturally occurring element.		
Chloride	2020	78.9	23.2 - 78.9	ppm	Abundant naturally occuring element; used in water purification; by- product of oil field activity.		
Iron	2020	Levels lower than detect level	0 - 0	ppm	Erosion of natural deposits; iron or steel water delivery equipment or facilities.		
Magnesium	2020	9.4	8.83 - 9.40	ppm	Abundant naturally occurring element.		
Manganese	2020	0.017	0.012 - 0.017	ppm	Abundant naturally occurring element.		
Nickel	2020	0.0068	0.0066 - 0.0068	ppm	Erosion of natural deposits.		
рН	2020	8.6	8.04 - 8.60	ppm	Measure of corrosivity of water.		
Silver	2020	Levels lower than detect level	0 - 0	ppm	Erosion of natural deposits.		
Sodium	2020	68.5	62.7 - 68.5	ppm	Erosion of natural deposits; by-products of oil field activity.		
Sulfate	2020	158	42.0 - 158	ppm	Naturally occurring; common industrial by-products; by-products of oil field		
Total Alkalinity as CaCO3	2020	107	72.0 - 107	ppm	Naturally occurring soluble mineral salts.		
Total Dissolved Solids	2020	504	265 - 504	ppm	Total dissolved mineral constituents in water.		
Total Hardness as CaCO3	2020	207	106 - 207	ppm	Naturally occurring calcium.		
Zinc	2020	Levels lower than detect level	0 - 0	ppm	Moderately abundant naturally occurring elecement used in the metal industry.		